Oxygen Glucose Deprivation Induced Prosurvival Autophagy Is Insufficient to Rescue Endothelial Function
نویسندگان
چکیده
منابع مشابه
Autophagy-regulated AMPAR subunit upregulation in in vitro oxygen glucose deprivation/reoxygenation-induced hippocampal injury.
Autophagy has been implicated to mediate experimental cerebral ischemia/reperfusion-induced neuronal death; the underlying molecular mechanisms, though, are poorly understood. In this study, we investigated the role of autophagy in regulating the expression of AMPAR subunits (GluR1, GluR2, and GluR3) in oxygen glucose deprivation/reperfusion (OGD/R)-mediated injury of hippocampal neurons. Our r...
متن کاملDRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy
DNA damage-regulated autophagy modulator protein 1 (DRAM1), a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53) target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R) injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brai...
متن کاملNimodipine Protects PC12 Cells against Oxygen-Glucose Deprivation
The protective effect of a L-type calcium channel blocker, nimodipine, on cell injury induced by oxygen-glucose deprivation (OGD) in PC12 cells was investigated. PC12 cells were exposed to in-vitro oxygen-glucose deprivation (30 minutes and 60 minutes respectively) in the presence or absence of nimodipine (10mM/L) in three different time schedules (pre-24h, pre-3h and concurrently). Cellular vi...
متن کاملTetramethylpyrazine Protects Neurons from Oxygen-Glucose Deprivation-Induced Death
BACKGROUND To explore the theoretical basis for protecting the brain from ischemic stroke with tetramethylpyrazine, we studied whether and how tetramethylpyrazine could protect neurons against the oxygen-glucose deprivation (OGD)-induced death and whether transient receptor potential cation channel, subfamily C, member 6 (TRPC6) was involved. MATERIAL AND METHODS Primary rat cortical neurons we...
متن کاملOxygen-Glucose Deprivation Induced Glial Scar-Like Change in Astrocytes
BACKGROUND It has been demonstrated that cerebral ischemia induces astrocyte reactivity, and subsequent glial scar formation inhibits axonal regeneration during the recovery phase. Investigating the mechanism of glial scar formation will facilitate the development of strategies to improve axonal regeneration. However, an in vitro model of ischemia-induced glial scar has not yet been systematica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Physiology
سال: 2020
ISSN: 1664-042X
DOI: 10.3389/fphys.2020.533683